Sewer-Mining: A water reuse option supporting circular economy, public service provision and entrepreneurship

3

4	Makropoulos ^{1*} , C., Rozos ¹ , E., Tsoukalas ¹ , I., Plevri ² , A., Karakatsanis ¹ , G., Karagiannidis ³ , L.
5	Makri ⁴ , E., Lioumis ⁵ , C., Noutsopoulos ¹ , C., Mamais ¹ , D., Rippis ² , C. and Lytras ² , E.
6	
7	¹ Department of Water Resources and Environmental Engineering, School of Civil Engineering, National
8	Technical University of Athens, Iroon Politechniou 5, 157 80 Zografou, Athens, Greece (*E-mail:
9	<u>cmakro@mail.ntua.gr</u>).
10	² Athens Water and Sewerage Company S.A (EYDAP)–Research and Development – Oropou 156, 11146,
11	Galatsi, Athens, Greece.
12	³ Institute of Communication and Computer Systems, National Technical University of Athens, 9 Iroon
13	Polytechniou str., 157 80 Zografou, Athens, Greece.
14	⁴ TELINT RTD Consultancy Services Ltd., 1 Westferry Circus Canary Wharf, London, United Kingdom.
15	⁵ CHEMITEC Technical and Commercial Company, 23, Spyrou Vrettou str., 136 71 Acharnes, Athens,
16	Greece.

17

18 Abstract

19 Water scarcity, either due to increased urbanisation or climatic variability, has motivated societies to 20 reduce pressure on water resources mainly by reducing water demand. However, this practice alone 21 is not sufficient to guarantee the quality of life that high quality water services underpin, especially 22 within a context of increased urbanisation. As such, the idea of water reuse has been gaining 23 momentum for some time and has recently found a more general context within the idea of the 24 Circular Economy. This paper is set within the context of an ongoing discussion between centralized 25 and decentralized water reuse techniques and the investigation of trade-offs between efficiency and economic viability of reuse at different scales. Specifically, we argue for an intermediate scale of a 26 water reuse option termed 'sewer-mining', which could be considered a reuse scheme at the 27

28	neighbourhood scale. We suggest that sewer mining (a) provides a feasible alternative reuse option
29	when the geography of the wastewater treatment plant is problematic, (b) relies on mature treatment
30	technologies and (c) presents an opportunity for Small Medium Enterprises (SME) to be involved in
31	the water market, securing environmental, social and economic benefits. To support this argument,
32	we report on a pilot sewer-mining application in Athens, Greece. The pilot, integrates two subsystems:
33	a packaged treatment unit and an information and communications technology (ICT) infrastructure.
34	The paper reports on the pilot's overall performance and critically evaluates the potential of the sewer-
35	mining idea to become a significant piece of the circular economy puzzle for water.
36	
37	Keywords: water reuse, ecosystem services, sewer-mining, SMEs, smart water systems

41 **1 Introduction**

The global urbanization trend has resulted in a constant increase of urban populations. In Europe, for 42 43 example, the percentage of the urban population is 73.4% of the total and is expected to rise up to 81% 44 by 2050 (UN, 2014). This trend is coupled with water scarcity due to supply-side impacts of climatic 45 changes (Klein et al., 2014) and improving living standards (UNESCO, 2016) resulting in increased pressures on water resources. For this reason, recent EU reports stress the need to encourage European 46 47 stakeholders to first acknowledge that "water is an essential but limited resource and needs to be 48 carefully allocated and used", and then to endorse and promote circular and green economies (EUWA, 2014). 49

50 Turning waste into a resource is an essential part of increasing the efficiency of resources and moving 51 towards a more circular economy (EC, 2015). In the context of the urban water cycle, this translates 52 primarily into using treated wastewater (a waste) to supply (as a resource) a (more often than not) 53 non-potable water use. This can be implemented at several scales, associated with the degree of 54 centralisation of the treatment employed (Libralato et al., 2012).

At the more centralised scale, the use of tertiary treatment in existing wastewater treatment facilities can open up non-potable reuse options, especially in large water consumers such as agriculture or industry. Indeed, notable examples of such large-scale reuse include cases in Spain (Mujeriego et al., 2008), Israel and Australia (Jimenez and Asano, 2008). However, as centralised wastewater treatment plants are by definition close to the urban centres they service, they are not necessarily close enough to agricultural or industrial activities and as such the construction and operation of treated effluent conveyance systems can rival in costs even desalination.

Decentralized technologies on the other hand, by their very nature (i.e. *in situ* installation), are closer to the circular economy concept, in that by closing the loop between waste and resource locally, waste water becomes not 'just' a by-product of the urban water system with some potential for reuse, but a resource *per se*, also decreasing (or eliminating) the barrier of transmission costs.

66 Decentralized water recycling technologies come in a wide variety of options and scales (Rozos and

67 Makropoulos, 2012). At the lowest scale, in-house units treat water from the hand-basin, shower and bath and provide this water for use in the toilet, washing machine and for outside uses (Dixon et al., 68 1999; Leggett et al. 2001). The problem at this scale is that the maintenance and operational costs are 69 70 very high to allow economically viable schemes and as such, this scale of reuse (termed greywater 71 reuse (Li et al., 2009)) usually relies on additional motivation, such as drought conditions or positive environmental attitudes of individuals at the household level (Koutiva and Makropoulos, 2016). On 72 73 the other hand, greywater recycling at a larger scale, the cluster or neighbourhood scale (e.g. Paris 74 and Schlapp, 2010), has much lower running costs but requires extensive work for the installation of 75 dual reticulation, which unless installed during the construction phase, results in considerable costs. 76 Sewer-mining is a less known option in the toolbox of decentralized wastewater reuse technologies 77 at an intermediate (local-to-neighbourhood) scale. It extracts wastewater from local sewers, treats it 78 at the point of demand and supplies local non-potable uses (such as urban green irrigation) while 79 returning treatment residuals back to the sewer system (Butler and MacCormick, 1996) for eventual 80 treatment in the centralised wastewater treatment plant thus eliminating the need for both expensive

This type of technology was pioneered in Australia to provide non-potable water for urban uses. 82 including for example the irrigation of urban green spaces, sport facilities and even domestic uses 83 (AEDCS, 2005; Sydney Water, 2013; Chanan and Woods, 2006; Fisher, 2012; Xie et al 2013). Table 84 85 1 displays some successful applications of sewer-mining in Australia with capacities ranging from 100 to over 2000 m^3/d . It is worth noticing that apart from the application in Darling Quarter, where 86 87 the entire treatment system is fitted within a room in the building's basement and extra care had to be 88 taken to ensure no malodour, the average cost of reclaimed water is very close (if not lower) to potable 89 water costs.

conveyance systems from end of pipe treatment installations and dual reticulation infrastructure.

90

81

Location	Technology	Capacity	Use	Cost	
¹ Flemington Racecourse	Dual			Estimated unit capital cost	
Melhourne Australia	membrane,	100 m ³ /d	Irrigation	0.42 \$/m ³ , operational cost	
Webbourne, Australia	UV			0.43 \$/m ³ , prices 2006	
	Moving	170 m ³ /d	toilet flushing	unit capital cost 2.2 \$/m3	
² Darling Quarter, Sydney's	bed, biofilm		$170 \text{ m}^{3/4}$	irrigation cooling	operational cost 2.1 \$/m3,
CBD Australia	reactor, RO,		towers	prices 2011	
	UV				
³ Riverside Rocks Park.	Reed beds.			estimated unit capital cost	
Sydney, Australia	UV	360 m ³ /d	Irrigation	0.49 \$/m ³ , prices 2006	
				estimated unit capital cost	
⁴ Pennant Hills, North	MDD IIV	1000	Golf field	0.49 \$/m ³ , prices 2008	
Sydney, Australia	MBR, UV	m ³ /d	irrigation		
				cost 1.05 \$/m ³ prices 2009	
5 Sudnay Olympia Dark	SBR,	2191	Toilet flushing,	(000% the price of petchle)	
Sydney Orympic Falk	nutrient	m ³ /d	irrigation	(90% the price of potable)	

Table 1: Sewer-mining applications in Australia.

91 ¹Clearwater (20016), ² ISF (2013), ³ McFallan and Logan (2008), ⁴ WERF (2008), ⁵ Listowski (2009)

92 Despite the existence of sewer-mining success stories in Australia, several challenges remain currently in the way of such applications in Europe, including public perception, inadequate 93 94 regulatory frameworks, engineering issues, as well as, importantly, financial constraints. Euro-zone 95 GDP in the final quarter of 2015 was still below its pre-crisis peak of early 2008 whereas America's was almost 10% above its peak of late 2007 and Australia's almost 60% (The Economist, 2016). For 96 97 this reason, the European Commission has launched an investment plan for Europe to unlock over 98 EUR 315 billion of investment over the next few years and deliver a powerful and targeted boost to 99 economic sectors that create jobs and raise growth (EC, 2016). Regarding the water sector, a GDP

100 growth around 0.2-0.6% is expected as a result of water industry investments alone, to achieve 101 compliance with the WFD (EC, 2014). It therefore becomes evident that this period is quite 102 favourable in Europe for the kind of entrepreneurship that combines circular/green economies with 103 water management.

104 In this study, we suggest that recent technological advancements, regarding both wastewater 105 treatment and smart ICT technologies, offer an opportunity for Small Medium Enterprises (SME) to 106 become a principal actor in the water reuse sector, creating a real market for water reuse services and 107 increasing its applications in the EU. Specifically, we argue that Sewer-mining could develop into a 108 win-win situation whereby the benefits of market competition will be brought to bear in the water 109 sector due to the ability of SMEs to manage sewer-mining units and sell the treated wastewater (or 110 indeed irrigation services) to city municipalities, while water companies also benefit being able to 111 sell untreated sewage, or at least have some of their wastewater treated at no cost to them. All in all, 112 two major objectives set by the European Commission regarding (i) economic growth (new investments, new jobs, etc.) and (ii) environmental protection (reduce the pressure on water resources 113 114 while increasing ecosystem services such as heat island effect reduction through urban green 115 irrigation even in water scarce areas) stand to benefit from an adoption of sewer-mining as a dominant 116 form of urban treated wastewater reuse.

117 To support this argument, what is doubtlessly needed is a demonstration of the technology's ease of 118 deployment, operational efficiency and viability in terms of its business model. In this paper, we 119 present the configuration and operation of a prototype sewer-mining unit, piloted in the city of Athens, 120 Greece, highlighting the following characteristics:

- 121 • Availability of state-of-the-art solutions based on a fusion of the most recent ICT with 122 wastewater treatment technologies enabling remote control of multiple units;
- Ease of deployment taking into account both treatment constraints and use of the water 123 • 124 produced requirements;
- 125
- Generality of the approach that enables straightforward application to a variety of cases •

requiring a calibration of only a minimal set of parameters;

Finally, to support and facilitate the transferability of sewer-mining to a variety of cases, we report on two tools, developed to support design and deployment at different scales. These tools, described in the following sections, include a) an urban water cycle model that can be used not only to estimate the demand of non-potable potable water but also the ecosystem services of using the recycled water (e.g. the reduction of the urban heat island effect) and b) a model that helps in the identification of potential locations for deployment of sewer-mining units at the neighbourhood/region/city scale.

133 2 Methods

134 **2.1 Treatment unit**

The sewer-mining unit consists of two sub-units; the Membrane bioreactor (MBR) and the Reverse Osmosis (RO) unit. Both have been constructed as individual packaged modules that are joined together in one compact system offering ease of transportation. The capacity of the unit is $10 \text{ m}^3/\text{d}$.

138 In the MBR, a circulation stream of sludge keeps in balance the biological solids around the 139 membranes. This recirculation stream is rich in dissolved oxygen (2.5 to 5.0 mgO₂/L) and provides 140 to the nitrification zone supplemental oxygen for the biological processes. This stream also prevents 141 the sludge de-watering in the filtration tank and additionally reduces the fouling of the membranes 142 by reducing the TSS load at the membrane. The circulation rate regulates the biomass concentration, 143 which should not exceed a maximum threshold. MBR operation requires that this stream is 4 times 144 the net permeate flow. The latter suggests an overall sludge circulation flow of $40m^3/d$ during the 145 peak flow.

For the maintenance of the membrane, the standard suction required for sludge filtration is periodically interrupted for a back-flush and/or a relaxation cycle ("Cleaning in place"). Both backflush and relaxation cycles are executed automatically by the operation software. In order to preserve membrane permeability, it is also required to run chemical cleaning cycles on the membrane. The chemical cleaning procedures have been scheduled to run daily, weekly (short duration and low concentration cleanings) and yearly (performed manually, requires soaking times from 8-12 hours).

153

Figure 1: Membrane bioreactor plan view (dimensions in mm).

The MBR sub-unit is contained in a $2.16 \times 2.00 \times 2.87 \text{ m}^3$ box, which is divided into five compartments where the treatment sub-processes take place. These compartments serve also as tanks (buffers) that allow a variation (between a minimum and a maximum operational level) of the sewage volume that is treated at any time. The numbers 1 to 5 appearing in orange circles in **Figure 1** correspond to the tanks where the various processes of the sewage treatment take place.

In the primary tank, floating and settling substances are removed. The sewage from this tank
 passes, via a coarse filter, to the denitrification tank for further treatment whereas the collected

161 materials are removed via the drain.

- 162 2. In the denitrification tank, nitrate reduction takes place thanks to the organic substrate of the
 163 influent sewage. This tank is equipped with underwater mixer which keeps the sludge
 164 suspended and uniformly mixed. This is actually a mixture of return sludge and raw
 165 wastewater. This mixture is pumped to the nitrification tank (P2 in Figure 1).
- 166 3. In nitrification tank both oxidation of the organic substance and nitrification of ammonium 167 nitrogen take place simultaneously. The nitrification zone is equipped with an air distribution 168 system where fine bubbles both keep the nitrification reactor in aerobic conditions and keep 169 the content uniformly mixed. The aeration process is conducted in a non-homogenous way 170 inside the oxidation reactor. In detail, the air distribution line is submerged into the tank and 171 is controlled automatically according to the dissolved oxygen concentration, which is 172 measured by DO sensors. This makes the system more flexible and more energy-efficient 173 regarding the biological processes. The air injection line is positioned upstream of the terminal section of the nitrification tank, in sufficient distance from the pump feeding the membrane 174 175 tanks (P3 in Figure 1), so as not to disturb its smooth operation. This pump is an immersed pump at low pressure head. 176
- 177 4. In the membrane tank, permeate is extracted through the membrane (to be further treated in 178 the RO sub-unit, see blue line originating from membrane in Figure 1) via a positive 179 displacement lobe pump. This pump is reversible to allow periodic back-flushing operation. The permeate system discharges into the final storage permeate tank. At least 300 L of storage 180 181 are required to carry out the various back-flushing operations of the membranes and the 182 automatic routine maintenance cleaning steps with chemicals. A part of the sludge of the 183 membrane tank is pumped to the final tank (P6 in Figure 1) whereas the rest part overflows 184 back to the nitrification tank.

185
5. In the final tank, the final settlement takes place and the sludge is drained from the bottom. In
186
case of excess sludge, this tank overflows. The outflows from this tank (drain plus any

- 187 overflows) along with the drains from primary tank are the sludge coming out from the sewer-188 mining unit, which should be returned to the sewer.
- The effluent of the MBR is further treated with an RO. The RO skid along with the required electromechanical equipment and the controllers of MBR and RO are located inside a second $2.16 \times 3.00 \times 2.87 \text{ m}^3$ box, adjacent to the MBR box (see **Figure 2**). **Table 2** gives the expected quality indicators of the MBR and the RO effluents against the influent sewage.

Table 2: Quality indicators after MBR and after RO sub-units.

Indicator	Sewage	MBR	RO
BOD ₅ mg/L	154	≤10	≤1
COD mg/L	341	≤70	≤5
TSS mg/L	146	≤5	nil

193 **2.2** Automated monitoring – remote controlling

Sensing elements, data collection instruments and control devices are integrated into an ICT smart platform (Karagiannidis et al. 2016). 'Sensing' here refers to, *inter alia*, field sensors (for both wastewater and treated effluent), heat/temperature and energy sensors with which the compact unit is equipped. These are integrated to field sensor porting means and coupled with a targeted communications solution, which provides a self-organizing and autonomous wireless network set-up, linking local events to the control centre. More specifically, the ICT platform offers the following services to support the operation of the compact treatment unit:

- local/remote access and control of the sensors,
- inspection of sensor metadata (e.g. location, time etc.),
- real-time data retrieval and display,
- detection of events of interest (alerts can be triggered),
- manipulation of the stored timeseries (insert, delete, edit),
- queries to historical data (e.g. based on predefined date and time period),
- visualization of the sensor data (e.g. different colour schemes and charts)

• reports in various formats (e.g. .txt, .xls, etc.)

209 The platform architecture is displayed in Figure 2. Twenty-one physical and chemical characteristics 210 (see Table 3) are measured using 10 sensors. These sensors are connected to a sensor controller 211 (consists of two probe modules and one display module), which turns the signals received from the 212 sensors into digital data, displays and logs the measurements. To enable remote retrieval of this data and remote configuration of the sensors, the sensor controller is connected to a micro-controller via 213 an RS485 to USB adaptor employing MODBUS protocol. The micro-controller is a Raspberry Pi (a 214 215 low cost, credit-card sized computer) running a Linux server. This Linux server communicates with 216 the main server via a wireless network (it can be Ethernet or 3G in other applications). The main server is a desktop PC that hosts the web platform and offers to the remote and local users' access to 217 218 the service.

Figure 2: System architecture of the smart ICT platform.

Location	Code	Index	Units
Inlet	DL0_S8_1	Conductivity	mS/cm
Inlet	DL0_S8_2	Temperature	°C
Anoxic Tank	DL0_S7_1	Nitrate	mg/L
Anoxic Tank	DL0_S7_2	Chloride	mg/L
Anoxic Tank	DL0_S7_3	Temperature	°C
Aeration Tank	DL0_S3_1	DO	mg/L
Aeration Tank	DL0_S6_5	Temperature	°C
Aeration Tank	DL0_S6_1	Ammonium	mg/L
Aeration Tank	DL0_S6_2	Nitrate	mg/L
Aeration Tank	DL0_S6_3	Potassium	mg/L
Aeration Tank	DL0_S6_4	Chloride	mg/L
Aeration Tank	DL0_S6_5	Temperature	°C
Membrane Tank	DL0_S0	MLSS*	mg/L
Membrane Tank	DL0_S9_1	PH	pН
Membrane Tank	DL0_S9_2	Temperature	°C
Permeate Tank	DL0_S1	Turbidity	NTU
Permeate Tank	DL0_S5_1	Conductivity	mS/cm
Permeate Tank	DL0_S5_2	Temperature	°C
RO Effluent	DL0_S4	РН	pН
RO Effluent	DL0_S2_1	Temperature	°C
RO Effluent	DL0_S2_2	Conductivity	mS/cm

Table 3: Measured physical and chemical characteristics in sewer-mining unit.

*MLSS: Mixed liquor suspended solids

221

222 For the automation of electromechanical processes (operation of pumps, blowers, mixers, valves etc.),

a programmable logic controller (PLC) is used. Specifically, a Vision1210 (by Unitronics) PLC is

224 used to automate the following functions:

- change unit from "Manual Mode" to "Auto Mode",
- control and modification of supplies (VALUES Q) by setting minimum and maximum flow
 transmitter values,
- monitoring of alarms/alerts generated by the PLC,
- monitoring of tank level,
- monitoring of mixers and blowers, and control of timers,
- monitoring and control of pumps, valves and flow meters,
- monitoring and control of pressure transmitters,
- control of "Cleaning in Place" function.

234 To enable the remote controlling of the PLC, the PLC is connected via a Wi-Fi to the main server.

Figure 3 displays the main screen used to control the PLC. The user can read in this screen the volume

stored in all tanks of the MBR (primary, denitrification, nitrification, membrane, sludge, and permeate)

and RO systems, the flow pumped between any two tanks, and the air pressure of any blower. The

chemicals and the equipment of the cleaning system are also displayed in this screen.

239

Figure 3: PLC user interface main screen.

240 All this information is processed into the main server, which runs the software that integrates all

241 related functions under one platform. This software, named Protocol Adapter, is based on the OGC-SWE standards (Open Geospatial Consortium - Sensor Web Enablement). Protocol Adapter is 242 243 responsible for the communication of the server with the micro-controller to get the measurements 244 from the sensors. Then, Protocol Adapter translates these raw measurements into XML files, 245 according to the OGC standard. These XML files are processed by the Sensor Observation Service 246 (to obtain observations from one or more sensors) and by the Sensor Event Service (to obtain alerts, 247 i.e. notifications regarding measurements outside the nominal range). Finally, these two services send 248 their outputs (in SensorML format) to the Data Fusion Engine, which, after the necessary analysis, 249 transforms them to web format (JSON) and pass them to the Web Platform.

Figure 4 displays the web interface used to monitor the operation of the compact unit. In this screen timeseries of the permeate tank temperature, and instant values of permeate tank turbidity and conductivity are displayed (provided by the Sensor Observation Service). Along these values, alarms concerning the corresponding sensors are displayed (in **Figure 4** an alarm concerning the turbidity has been triggered) along with the related logs.

Figure 4: Monitoring remotely the sewer-mining unit via web interface.

255

The merging of treatment and ICT technologies described above, allows for the following keyfeatures that significantly improve the potential for sewer-mining uptake:

- Automated maintenance. This is crucial to minimize the amount of time technicians spend on
 each unit (and hence the operational cost).
- Remote operation. This will allow an operator to monitor multiple units centrally without
 having to waste man-hours in transportation for periodic or unscheduled visits to each unit.
- Pre-fabrication. In order to minimize the cost and the time required to deploy a unit, the units
 should be pre-constructed and modular.
- Minimal weight and volume. It is evident that the smaller the units the easier the logistics.
 This is critical since some water needs may be seasonal and as such units should be easily
 stored, transferred and deployed at the installation location, and transferred back to storage.
 An additional benefit is that smaller units tend to cause less public disturbance (olfactory or
 visual).

269 **2.3 Modelling Tools**

To facilitate and support the uptake of sewer-mining, two tools were developed, one for the local and one for the city scale. Both are briefly discussed in following paragraphs.

Figure 5: Modelling water recycle with UWOT (left); insolation and latent heat (right).

270 The tool for the local scale is based on UWOT (Makropoulos et al., 2008; Rozos et al., 2013). UWOT

271 is capable of simulating all urban water cycle flows, one quality index (it can be BOD₅, dissolved

272 oxygen, TSS or any other index selected by the user) and the energy related directly and indirectly with the urban water cycle. UWOT is employing a demand-oriented representation of the network in 273 274 which demand signals instead of flows are simulated. The model distinguishes between two types of 275 demand signals, the push and the pull signals. Push signals are related with a need to dispose an 276 amount of water (e.g. stormwater, wastewater). Pull signals represent a need for an amount of water to cover a demand (e.g. irrigation). In the UWOT schematic representation of a network, pull signals 277 278 have opposite direction to the resulting water flow (e.g. in left panel of Figure 5 a water demand 279 signal is emitted from the irrigated area and received, after passing through a signal logger, by the 280 local tank, which results in a flow from tank to the irrigated area). Push signals have the same direction 281 with the resulting flow (e.g. in left panel of **Figure 5** the tank overflow when the tank is full and the 282 abstraction from mains when tank gets empty).

Figure 5 (left panel) displays the network of the KEREFYT pilot unit as it is represented in UWOT. 283 284 This representation includes one component that simulates the sewer-mining unit, one component for the recycled-water tank, one component that simulates the irrigation needs and the latent heat, and 285 286 one component that simulates the insolation. According to the simulation, the amount of recycled water suffices to irrigate the area of 50 m^2 without requiring additional potable water (actually the 287 288 maximum demand is 450 L/d, therefore a much larger area could be irrigated with the recycled water). 289 The simulated latent heat and insolation are displayed in Figure 5 (right panel). These timeseries can 290 be used to estimate the sensible heat, which is responsible for the urban heat island effect (Rozos et al., 2016). Finally, UWOT simulates the quality of the wastewater in the pipe (the pipe from which 291 292 wastewater is pumped into the unit) after the mix with the sludge from the unit. The following table 293 gives the values of BOD₅ after the mix for various pipe flows and assuming BOD₅ before mix equal to 154 mg/L. For the Monte-Carlo simulations employed by the spatial-stochastic tool (see the city-294 295 scale tool further down), an interpolation method is used to produce an arbitrary number of flow-296 BOD₅ pairs of values based on the following table.

Pipe flow (L/d)	BOD ₅ after mix (mg/L)	
10204	156	
3401	176	
340	377	
102	896	

Table 4: BOD₅ values (after mix) for various pipe flows.

297

In conclusion, UWOT can be used to estimate water needs, to properly dimension the capacity of the equipment required to supply with recycled water (permeate tank, treatment unit, pumps, etc.), to estimate the influence of the sewer-mining sludge disposal on the sewage quality (adverse effects due increase of wastewater strength) and to estimate ecosystem services (decrease of local temperatures due to evapotranspiration).

303 The modelling above assumes that wastewater is a non-limiting resource. However, in reality, sewer-304 mining decreases the wastewater flowing through a given sewer increasing at the same time its 305 strength (since an amount of water is extracted from the sewage to cover local needs) while treatment 306 by-products (sludge) with high BOD₅ loads are sent back into the sewer. High strength wastewater 307 can cause sewer problems such as blockage, odour and corrosion (Marleni et al., 2012). To minimize 308 the risk of adverse effects due to an installation of a sewer-mining unit, a spatial-stochastic tool was 309 developed that evaluates alternative locations for installing such a unit, and assigns to them a score 310 regarding their value (area served) and potential risk of sewerage corrosion.

To estimate the risk associated with each location, the dimensionless metric *Z*, originally proposed by von Bielecki & Schremmer (1987) and Pomeroy (1990), is employed in order to quantify the probability of H_2S build-up. For a mapping between values of *Z* and corresponding characteristic pipe conditions the interested reader is referred to the relevant table in Pomeroy (1990). The metric requires information regarding sewage network characteristics and condition. More specifically the metric *Z* is defined as follows,

$$Z_{i} = \frac{0.3 \times 1.07^{T-20} \times [BOD_{5}]_{i}}{J_{i}^{0.5} \times Q_{i}^{1/3}} \times \frac{P_{i}}{b_{i}},$$
(1)

where, *i* is the pipe index, J_i is the pipe slope, *T* is the sewage temperature, Q_i is the discharge (m³/s), P_i is the wetted perimeter of the pipe wall and b_i the surface width of the stream. Eq. (1) can be used for a single pipe, thus we used a modified version of index Z of Pomeroy for a "chain" of pipes *n*:

$$MZ_c = \sum_{i=1}^n a_i \times Z_i,$$
(2)

where, a_i are weight coefficients. In this study we use weight values proportional to pipe length using the following formula, $a_i = L_i/L_{tot}$, where, L_i is the length of pipe *i*, and L_{tot} is the total length of pipes of chain (*i* = 1, ..., *n*). It is worth mentioning that literature includes a variety of metrics (Boon, 1995; Hvitved-Jacobsen et al., 2013; Lahav et al., 2006; Marleni et al., 2015), other than Pomeroys' *Z* that could be used to quantify the exact amount of H₂S in terms of mg/L.

326 A Monte-Carlo simulation, whereby the network operation is simulated multiple times with each 327 simulation having different parameter values for wastewater discharge, BOD₅ loading and diurnal 328 peak factors, gives, for each alternative installation location, the probability of the value of the metric 329 Z to exceed a critical threshold (here Z > 7500 following Pomeroy (1990)) at any pipe downstream 330 the sewer-mining unit. It is remarked, that the setup of the Monte-Carlo procedure is subject to expert 331 judgment and the available computational tools and metrics. For example, in the case of metric Z one 332 can consider as uncertain parameters all those related with its inputs, e.g., Q_i is affected by seasonal 333 or diurnal peak factors; which in turn can be used within a Monte-Carlo simulation in order to account 334 for their variability.

An example application of this methodology (Tsoukalas et al., 2016) with results from the city of Kalyvia Thorikou, in Greece, is displayed in **Figure 6**. In the left panel, the sewerage topology and the green areas (potential recycled-water users) of the studied area are displayed. The red line is the unique downstream pathway from a node (i.e. a potential sewer-mining location) to the end of pipe

339 wastewater treatment plant. The right panel displays the results of the Monte-Carlo simulation. The horizontal axis of this plot gives the expected value of the Z metric for all pipes downstream of the 340 341 (potential) sewer-mining installation node. The vertical axis gives the maximum green area that can 342 be served by each installation node. Results indicate that the node with ID 3 is a promising place to 343 install a sewer-mining unit because it offers access to a large green area (the second largest) while 344 also having a low (the second lowest) expected Z value and hence a low risk of H₂S build-up. In 345 contrast, node ID 22, for example, although close to a green area of a similar size to that of ID 3, is 346 less attractive due to the (much) higher associated risk of H₂S build-up.

Figure 6: Urban area with alternative locations of sewer-mining installation (left panel), evaluation of alternative locations with Monte-Carlo simulation (right panel).

Another illustrative example from the same case study is given in **Figure 7**, where the top panel shows the expected *Z* values across the optimal path identified in the previous step for node with ID 3. Similarly, in the lower panel the probability of non-exceeding a threshold value (i.e., *Z* non-exceeding 7500) is calculated for the cross-section of the optimal path. Using such an analysis it is possible to identify critical pipes that could potentially lead to network problems. In this case, it is evident that the pipes with ID C171, C170, C169 and C168 are the most vulnerable since they are showing high values of expected *Z* and low probabilities of non-exceedance of the specified threshold value. This means that even in the optimal case of locating a unit in the node with ID 3, monitoring of the situation in these potentially vulnerable downstream pipes needs to be included in the regular post-installation maintenance and inspection operations (for example as an obligation of the unit

operator towards the water utility that owns the network).

Figure 7: Illustration of expected *Z* value (top panel) and probability of non-exceedance a threshold value (lower panel) across the identified optimal path of node with ID 3.

349 **3** Case study

348

The unit described above was installed (**Figure 8**) in a facility within the premises of the Athens Water Supply and Sewerage Company (EYDAP). The facility, which is called KEREYFT is EYDAP's sanitary engineering research and development centre and the unit was installed for the purposes of the EU research project DESSIN.

The effluent of this unit is used for the irrigation of an area of 50 m². At the time this paper was written, the unit had been running for 8 months. During this period, the following aspects where assessed: i) the challenges regarding operation of such a "Lilliputian" unit including the stability of the biological procedures, the identification of the unit optimal operation, and maintenance; ii) the quality of the effluent; iii) the reliability of the measurements provided by the online system. The compact treatment unit performed quite satisfactory in all assessed aspects (Plevri et al., 2016a).

360 The biological reactor of the MBR module proved very stable despite its small size. The maintenance

361 procedure was easily performed as it was completely controlled via the PLC user interface. The electromechanical components operated flawlessly. The measurements obtained by the online system 362 363 were verified against laboratory results and proved to be quite reliable. The only problems noticed 364 were with the sensor controllers, which required (manual) reset after main power failures. Another 365 issue originated from the small PLC memory, which was getting frequently full with logged data. To 366 resolve these issues an uninterrupted power supply unit was installed for the sensitive electronic 367 devices, and a data logger was connected to the PLC to download data frequently and free the PLC 368 memory.

369

The satisfactory results obtained from this pilot application enhance confidence into the ability of the unit to be used as a viable source of recycled water for (non-potable) urban applications. The unit initiated without a biomass inoculation and the start-up period lasted five weeks, in which the necessary conditions were met for biomass development and nitrification-denitrification processes started taking place. From the first results, it was evident that the MBR subunit could reduce the concentration of most pollutants under the recommended limits for water reuse (Plevri et al., 2016b). Despite the fact that the inlet showed significant fluctuations in several qualitative variables, the MBR's permeate characteristics remained steady. The RO treatment further improved the treated water quality, especially the aesthetical and microbial quantities. In general, the reclaimed water could fully meet the recycled water limits, as specified in the Greek national legal framework and specifically article 6 of the JMD145116/2011. In **Table 5**, certain critical qualitative variables

referring to the effluent of both MBR and RO of the pilot unit are compared to the respective limits of the Greek legislation.

	Mean value (Standard deviation)			
		RO	Legislation	
Parameters	MBR emuent	effluent	limits	
TSS (mg/L)	<2	<2	≤2	
VSS (mg/L)	<2	<2	-	
COD (mg/L)	23(9,53)	<10	-	
CODs (mg/L)	29(10)	<10	-	
$BOD_5(mg/L)$	0,9	0,8	≤10	
TP (mg/L)	5,9 (1,2)	<0,5		
TN	-	12(7,8)	≤15	
NH_4 - N^+ (mg/L)	0,25(0,32)	-	≤2	
			≤ 100 for	
Cl ⁻ (mg/L)	172(75)	42(24)	sprinkler	
			irrigation	
Turbidity (NTU)	0,32 (0,1)	-	≤2	
Total Coliform (cfu/100ml)	307 (393)	ND	≤2	
Faecal Coliform (cfu/100ml)	1,09 (1,86)	ND	-	
E.Coli (cfu/100ml)	0,82 (0,98)	ND	≤5	

Table 5: Overall performance of the MBR-RO pilot unit (JMD 145116, 2011).

370

Focusing on the MBR permeate, the average COD was only 23 mg/L with a very high removal, averaging around 95% (**Figure 9c**), while BOD₅ was always below 2 mg/L. The nitrification process was complete, with ammoniacal nitrogen concentrations reaching zero (**Figure 9d**). Moreover, the removal of suspended solids was total, being always below the limit of detection of the analytical 375 method (Figure 9a). Looking at Figure 9b, it is clear that the unit operated at values of MLSS over 376 8000 mg/L and despite the fact that the tank is small (1.5 m³), that value had a certain stability. Finally, 377 the transmembrane pressure (TMP) value was constant, indicating that the membrane remained intact, 378 without evident fouling. This proves that the two methods chosen for maintenance, back-flushing and 379 maintenance cleaning, were successful in maintaining the integrity of the membrane and recovery 380 cleaning was not necessary.

Figure 9: MBR performance in (a) TSS, (b) MLSS, (c) COD and (d) Ammonium

The stability of the permeate armored the operation of the Reverse Osmosis, verifying that the MBR system is an ideal pretreatment to RO. In the RO effluent, all microbial pollutants remained under the limit of detection of the analytical methods. The RO effluent did not show any presence of E.Coli or Total Coliform, indicating their complete rejection. Moreover, chlorides were less than a quarter of the RO inlet. Other parameters than remained under the detection limit are COD and Total Phosphorus. Last but not least is the fact that conductivity, which remained unaffected by the MBR, was drastically

reduced by the reverse osmosis. The rejection rate of the RO membrane, in terms of conductivity, averaged at values over 90% (**Figure 10**).

Figure 10: Conductivity data retrieved by the installed sensors.

381 4 Discussion: Challenges for Sewer-mining uptake

382 The challenges met and the issues highlighted by the pilot application concern: engineering,
383 operational, regulatory, social and financial/business model issues:

384 **A. Engineering Challenges:** engineering challenges arise mainly from the following issues:

- from the requirements for a minimal unit footprint, in an effort to maximize deployability 385 386 (even within small urban green spaces) and minimize community objections. As suggested by 387 Xie et al. (2013), a major technical challenge is the development of a treatment process that 388 can produce high quality treated water from raw sewage and is sufficiently simple and robust for decentralized applications. This issue is, to an extent, addressed currently as several 389 manufacturers of compact units do exist (PCS, 2016; WPL, 2016) that prepare pre-fabricated 390 391 modular components that can handle a variety of influent flow rates and BOD₅ loadings to 392 meet quality requirements. The pilot application described above serves as a proof of concept 393 towards this argument.
- from the challenge of selecting a proper location for placing the unit itself. Since the process

395 is bi-directional i.e., involves the extraction of wastewater and the re-injection of treatment 396 residuals to the network, the location of the unit is of paramount importance. A poorly selected 397 location could lead to insufficient operation of the unit itself and eventually influence the 398 broader network. Within this work, we have developed/customised two tools to address this 399 challenge: UWOT could help in assessing the compliance of a sewer-mining unit with relevant 400 regulations. First UWOT would estimate the required amount of recycle water for covering a 401 local need (hence the volume drained from the pipe), and then the flow and quality after the 402 mix of sludge with the sewage. UWOT (capable of running with time steps from a second to 403 annual) could run with a 10 minutes' time step and typical timeseries of flow to ensure 404 compliance over a 24-hour period (as required, for example, by Sydney Water regulations 405 (Sydney Water (2013)). Furthermore, the Monte-Carlo-based methodology proposed by 406 Tsoukalas et al., (2016) can be considered as a first step towards a holistic approach in 407 identifying suitable locations for placing sewer-mining units while concurrently trying to 408 minimize the risks associated with its implementation i.e., odour and corrosion related 409 problems. This has the advantage of taking into account the spatial and hydraulic 410 characteristics of the network while simultaneously accounts for the variability of wastewater 411 flow.

412 **B.** Operational Challenges: the improvement of the *modus operandi* employed to run and maintain 413 the unit is actually one of the largest challenge. The business model suggested here (based on SMEs) 414 requires multiple units to be run and maintained across a large urban area with limited trained 415 personnel. To accomplish this the treatment unit should: a) include automated procedures to minimize 416 the need for human intervention and b) allow remote monitoring and control. In terms of monitoring 417 in particular, the National Guidelines for Water Recycling of Australia (EPHC, 2006) suggest that the 418 agency that will operate the unit should monitor at least the quality of the recycled water, the compliance of the operation with the nominal system performance, the plumbing operation, and the 419 420 effect of recycled water use on the receiving environment. To this effect, our pilot application 421 demonstrates that new smart ICT technologies offer solutions to achieve these requirements and at 422 the same time allow for the required automation and remote operation (for remotely intervening 423 whenever necessary). It is also worth mentioning that recent developments in the field of artificial 424 intelligence and machine learning could be employed in order to develop algorithms, methods and 425 decision support systems that dynamically learn and adapt the operation of the unit depending on current conditions and/or requirements. Work on this front is in progress within the context of this 426 427 research (e.g., Bishop 2006; LeCun et al., 2015; Maier et al., 2014; Russel et al., 2003; Schmidhuber 428 2015). For example, a significant challenge identified early in the pilot was the preservation of the 429 smooth operation of the unit: the reclaimed water flux should be guaranteed, in order to comply with 430 the needs of its non-potable uses. But to achieve this, the developed biomass needs to be preserved. Biomass is very fragile and thus vulnerable to abrupt changes in the unit's parameters. As such, the 431 432 operator should always have a stack of spare electromechanical equipment that are vital to the 433 biological processes taking place, such as blowers, and be ready to immediately replace failing parts. C. Regulatory Challenges: these arise from constraints posed by municipalities in terms of locating 434 435 these units within the city area (e.g. need for environmental impact assessment etc.) and are very country specific. They also arise from constraints posed by water companies operating the sewerage 436 437 system regarding (upper bounds of) the concentration of chemical and physical parameters in the disposal of wastewater into municipal sewers. For example, EYDAP performs spot-checks of non-438 439 domestic users' disposals in sewage network in order to determine compliance with the relevant legislative provisions which for EYDAP is: $BOD_5 5 < 500 \text{ mg/L}$ and TSS < 3000 mg/L. Though these 440 441 regulations are usually set to prohibit commercial/industrial disposal of high organic content 442 wastewater into the wastewater network, they are restricting the opportunities related to sewer-mining. 443 For this reason, modifications to existing regulations are required. A potential approach (already applied in some cities in Australia) would be to have regulations that take into account both the 444 capacity of the treatment unit and the capacity of the receiving wastewater system. This requires 445 setting upper limits (e.g. concentration of organic matter) and/or lower limits (e.g. flow) that are 446

447 defined in the wastewater stream right after the mix of the sewage with the sludge from the sewer-448 mining unit. For example, Sydney Water (2013) requires that the concentration of suspended solids 449 after the mix (measured by analysis of a composite sample over a typical 24-hour period) should not 450 exceed 600 mg/L.

451 **D.** Social Challenges: the social factor, i.e., social acceptance of these practices, is a notoriously difficult factor to anticipate and manage. This is partly linked with public perception of recycled water 452 453 which is perceived in a generally negative fashion. In a recent survey in Greece, Koutiva et al., (2016) 454 found that this aversion reduces as the recycled water use moves away from the end users BOD₅ y. 455 As such, and since the effluent easily meets stringent removal standards (Lutchmiah et al., 2011; Xie 456 et al., 2013) it is suggested that for uses such as urban green irrigation (or equivalent commercial uses 457 such as golf courts irrigation) public acceptance would be sufficiently high to allow for demonstrative 458 units to be deployed as a first step towards building trust. Another public concern refers to malodours 459 coming from the treatment unit. Experience from the pilot application in Athens suggest that no unpleasant odour was noticed even when standing next to the treatment unit. However, the pilot unit 460 461 capacity was only 10 m^3 /d. A sewer-mining unit with much larger capacity would be perhaps less delicate. Even so, no serious problem is expected at a distance of a few tens of meters from the unit, 462 463 which in any case would be a restricted area. Last but not least, research also suggest (Castro et al., 464 2011) that beyond striving to minimise the negative impacts of an intervention, it is important to also quantify the positive benefits of the intervention in the form of (ecosystem) services. Ecosystem 465 services linked to the sewer-mining unit, including but not restricted to heat island effect reduction, 466 especially in water scarce areas (Rozos et al., 2016), such as the ones calculated by UWOT, could 467 play an important role in changing public perception and developing a more positive image for reuse 468 469 in general and sewer-mining in particular. This is especially true in water scarce environments, such 470 as Southern Europe and the Mediterranean where extracting more water from regular sources to irrigate urban green spaces, and thereby improving wellbeing for city dwellers during the hot summer 471 472 months is not an option.

473 E. Business model challenges:

As the potential benefits of sewer-mining for the circular economy and ecosystems are easily 474 identified, a major issue -with significant social extensions- concerns the establishment of a 475 476 functional business model that will ensure social acceptance and economic profitability for the 477 operator. Empirically, models that aim at providing high value-added services with absence of subsidization or excessive bank lending at every stage of the commercial application (initial, 478 479 intermediate or mature) prove to be the most resilient in time (Albach et al. 2014, p. 158). In relation 480 to the features of small-scale applications -such as the pilot study area- two business models comprise 481 the main candidates for sewer-mining technology commercialization: (a) full provision of the service 482 by the water utility (in this case EYDAP) who owns the sewerage networks or (b) privatization of the 483 service (e.g. by an SME), while the water utility maintains the property of the networks and receives 484 a rent for their use (e.g. a constant monthly fee or a fee proportional to the demand for the network's 485 use). This second business model is a type of *public-private partnership* (PPP), a highly common practice for new water infrastructures under formation (Marin 2009). The PPP model differs from the 486 487 public supply model in the sense that all business risks and benefits are -by contract- ceded to the private counterparty. In this context, the decision between the two business models is a matter of the 488 489 ratio between the marginal benefits and the marginal costs from the technology's application. 490 Generally, the higher this ratio is, the higher is the potential for private interest and involvement.

491 A primary estimation on the unit's cost has been undertaken by Plevri et al. (2016b). They suggest costs ranging from 0.86 euros/m³ for the MBR-UV scheme to 1.07 euros/m³ for the MBR-UV-RO 492 493 scheme, which should be considered a satisfactory starting point for the sewer mining technology's 494 diffusion, even for conventional pricing methodologies. It is, however, further suggested that under 'full cost' methods (where both economic and environmental costs are accounted for), the sewer 495 496 mining technology is expected to become significantly more attractive, while a large part of its cost 497 reduction rate depends on 'learning curve' attributes. In particular, assuming that for small-scale 498 applications the marginal costs between the private and the public sector do not vary significantly, 499 the business model selection depends on the accurate valuation (and pricing) of the marginal benefits - mainly those deriving from water-enhanced ecosystem services. A general framework for 500 501 quantifying the benefits of ecosystem services in macroeconomic accounts has been proposed by the 502 UN (2014). Water-enhanced ecosystem services concern the functions of the (local) ecosystem that 503 used to be inactive due to the limitations in available water. For example, in the study area, the most 504 notable derived service is microclimate regulation from watering local parks. This provides the 505 community with *direct*, *local and collective benefits* from less energy use for heating and cooling 506 during the year, features that are expected to promote the technology's social acceptance. Other, more 507 entrepreneurship-oriented ecosystem services, may come from the realisation of (formerly non-viable) 508 projects, such as touristic activities, urban farming, hydroponics and other environmentally based 509 activities, including education. These benefits could be multiplied -both qualitatively and 510 quantitatively- in a potential up scaling of the sewer mining technology, triggering an economic shift 511 towards new technical specialisations and jobs related to urban water recycling. However, at this point a quantitative estimation of this trend would exceed the scope of this work. What should be noted is 512 513 that at the small-scale it is the *variety* of ecosystem services that matters most rather than their *scale*. 514 Hence, from a business point of view, the achievement of economies of scope (diversification of 515 ecosystem services) is more important from *economies of scale*; the latter being a more appropriate 516 target for large-scale urban webs or *industrial ecology* complexes (Ehrenfeld and Gertler 1997). At 517 the small-scale, the conditions for the organization of local and transparent water-enhanced ecosystem 518 service markets between few competitive end-users are more favourable. In such markets, a private 519 operator (e.g. a start-up or an SME) would seem more flexible to manage the challenges of ecosystem 520 services diversification.

521 **5 Conclusions**

It is argued that sewer-mining could become a major 'game changer' in the increase of wastewater reuse within the (ever increasing) urban environment. Sewer-mining units, integrating advanced compact treatment technologies with ICT offer a series of benefits and present an opportunity for 525 more SMEs to enter the European (and Global) water market, not only as technology providers but 526 also as operators and service providers. Such SMEs will be able to provide water to cover non-potable 527 demands (e.g. irrigation, cooling towers, car washing, etc.) by deploying compact sewer-mining units 528 at the location of demand.

To support this argument, a pilot sewer-mining unit was set-up in Athens and its main characteristics were described. To facilitate planning regarding sewer-mining applications, two tools were developed. The first tool, UWOT, helps to estimate the non-potable water demand, the consumed energy, the sewage quality after the sewer-mining sludge disposal and the benefits from ecosystem services. The second tool helps in larger scale planning to locate the most suitable locations for installing sewermining units by taking into account the maximization of serviced area and the minimization of potential corrosion of the existing sewerage network.

A series of challenges for a large-scale uptake of sewer-mining were also briefly presented and discussed. Although these challenges are far from being met, it is argued that none of them are insurmountable and that the present social, financial and engineering context is in fact favourable towards resolving them.

540 Consequently, we conclude that sewer-mining provides an real opportunity that can help European 541 societies to comply with the requirements of directives (e.g. the WFD alleviating pressure on water 542 bodies from increased abstractions), increase ecosystem services even in water scarce areas (like the European South and the Mediterranean) and to progress towards achieving some of the most 543 544 advanced ambitions of the European Commission (e.g. the Junker Commission's drive towards Circular and Green Economies) while, importantly, encourage the private sector to make investments 545 in technology intensive, socially beneficial and environmentally friendly areas achieving triple 546 547 bottom line aspirations.

548 Acknowledgements

549 The research leading to these results has received funding from the European Union Seventh550 Framework Programme under grant agreement no 619039 (ENV.2013.WATER INNO&DEMO-1),

- 551 for the research project DESSIN "Demonstrate Ecosystem Services Enabling Innovation in the
- 552 Water". The research and its conclusions reflect only the views of the authors and the European Union
- is not liable for any use that may be made of the information contained herein.

554

555

556 **References**

- (COM) City of Melbourne. 2014. Total Watermark City as a Catchment: Creating a healthy City in
 a healthy Catchment, Melbourne 2014.
- (EC) European Commission. 2015. European Commission Fact Sheet: Circular Economy Package:
 Questions & Answers, MEMO-15-6204, Brussels, December 2015.
- 561 (EC) European Commission. 2016. Investment and financing. Available online from
 562 <u>http://ec.europa.eu/economy_finance/financial_operations/index_en.htm</u>, accessed on 23
 563 May 2016.
- (EPHC) Environment Protection and Heritage Council. 2006. National Guidelines for Water
 Recycling: Managing Health and Environmental Risks, Biotext Pty Ltd, Canberra.
- 566 (EUWA) EU Water Alliance, 2014. Main priorities for water under the Juncker Commission (2014 567 2019), September 2014.
- (ISF) Institute for Sustainable Futures. 2013. Darling Quarter Case Study: Successful sewage
 recycling within a high profile commercial building.
- 570 (WERF) Water Environment Research Foundation 2008 CASE STUDY: PENNANT HILLS GOLF
- 571 CLUB When to Consider Distributed Systems in an Urban and Suburban Context
- AEDCS: Australian Environmental Directory Case Studies. 2005. Technology profile: sewer mining
 for water reuse, Canberra.
- 574 Albach, Horst et al., 2014. Management of Permanent Change, Springer
- Asano T. and Levine D. 1996. Wastewater reclamation, recycling and reuse: past, present, and future,
 Wat. Sci. Tech., Vol. 33, No. 10-11, pp. 1-14.
- 577 Bielecki R., Schremmer H. 1987. Biogenic sulphur acid corrosion in gravity sewers: Mitteilungnen
 578 des Leichtweiss-Institutes fur Wasserbau der Technischen Universitaet Braunweig, No. 94.
- 579 Bishop, C. M. (2006) Pattern recognition. Mach. Learn. 128.
- 580 Boon, A.G., 1995. Septicity in sewers: causes, consequences and containment. Water Sci. Technol.
- 581 31, 237 253.

- Butler R., MacCormick T. 1996. Opportunities for decentralized treatment, sewer mining and effluent
 re-use. Desalination 1996, 106, 273–283.
- Castro, A.J., Martín-López, B., García-Llorente, M., Aguilera, P.A., López, E. and Cabello, J., 2011.
 Social preferences regarding the delivery of ecosystem services in a semiarid Mediterranean
 region. Journal of Arid Environments, 75(11), pp.1201-1208.
- 587 Chanan A., Woods P. 2006. Introducing total water cycle management in Sydney: A Kogarah Council
 588 initiative, Desalination, 187, 11–16.
- 589 Clearwater. 2016. Sewer Mining Technology Trial at Flemington Racecourse, available online at:
 590 https://www.clearwater.asn.au/resource-library/smart-water-fund-projects/sewer-mining-

591 technology-trial-at-flemington-racecourse.php, accessed on 23 May 2016.

- 592 Dixon, A. M., Butler, D., and Fewkes, A. 1999. "Water saving potential of domestic water reuse 593 systems using greywater and rainwater in combination." Water Sci. Technol., 39(5), 25–32.
- 594 Ehrenfeld, John and Nicholas Gertler, 1997. Industrial Ecology in Practice: The evolution of 595 interdependence at Kalundborg. Journal of Industrial Ecology
- 596 Fisher C. 2012. Sewer Mining to Supplement Blackwater Flow in a Commercial High-rise, USEPA
 597 2012: Guidelines for Water Reuse. pp. E8-E10.
- Hvitved-Jacobsen, T., Vollertsen, J., Nielsen, A.H., 2013. Sewer processes: microbial and chemical
 process engineering of sewer networks. CRC press.
- Jimenez, B. and Asano, T., 2008. Water reclamation and reuse around the world. *Water reuse: an international survey of current practice, issues and needs*, pp.3-26.
- 502 JMD 145116, 2011 Wastewater reuse Greece
- Karagiannidis, L, M Vrettopoulos, A Amditis, E Makri, and N Gkonos. 2016. "A CPS-Enabled
 Architecture for Sewer Mining Systems." 2016 International Workshop on Cyber-Physical
 Systems for Smart Water Networks (CySWater). doi:10.1109/CySWater.2016.7469056.
- Klein, R.J.T., Midgley, G.F., Preston, B.L., Alam, M., Berkhout, F.G.H., Dow, K., Shaw, M.R. 2014.
- 607 Adaptation opportunities, constraints, and limits. In Climate Change 2014: Impacts,

- Adaptation, and Vulnerability. In: Contribution to Working Group II to the Fifth Assessment
 Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press,
 Cambridge, UK.
- Koutiva, I. and Makropoulos, C., 2016. Modelling domestic water demand: An agent based approach.
 Environmental Modelling & Software, 79, pp.35-54.
- Koutiva, I., Gerakopoulou, P., Makropoulos, C. and Vernardakis, C., 2016. Exploration of domestic
 water demand attitudes using qualitative and quantitative social research methods. Urban
 Water Journal, pp.1-8.
- Lahav, O., Sagiv, A., Friedler, E., 2006. A different approach for predicting H2S(g) emission rates in
 gravity sewers. Water Res. 40, 259 266. doi:10.1016/j.watres.2005.10.026
- LeCun, Y., Bengio, Y. & Hinton, G. (2015) Deep learning. Nature 521(7553), 436–444. Nature
 Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
 Retrieved from http://dx.doi.org/10.1038/nature14539
- Leggett, D. J., Brown, R., Brewer, D., Stanfield, G., and Holliday, E. 2001. Rainwater and greywater
 use in buildings: Best practice guidance, CIRIA Publication C539, London.
- Li, F., Wichmann, K. and Otterpohl, R., 2009. Review of the technological approaches for grey water
 treatment and reuses. Science of the Total Environment, 407(11), pp.3439-3449.
- Libralato, G., Volpi Ghirardini, A., and Avezzù F. 2012. To centralise or to decentralise: An overview
 of the most recent trends in wastewater treatment management." Journal of Environmental
 Management 94.1: 61-68.
- 628Listowski A. 2009. Recycled Water At Sydney Olympic Park. Sydney Olympic Park Authority.629Availableonlinefrom:
- 630 <u>https://www.airah.org.au/imis15_prod/Content_Files/Divisionmeetingpresentations/ACTN</u>
 631 SW/PP-NSW_17-02-2009-SOP.pdf
- 632 Lutchmiah, K., Cornelissen, E.R., Harmsen, D.J., Post, J.W., Lampi, K., Ramaekers, H., Rietveld,
- 633 L.C. and Roest, K., 2011. Water recovery from sewage using forward osmosis. Water

- 634 Science and Technology, 64(7), pp.1443-1449.
- Maier, H. R., Kapelan, Z., Kasprzyk, J., Kollat, J., Matott, L. S., Cunha, M. C., Dandy, G. C., et al.
 (2014) Evolutionary algorithms and other metaheuristics in water resources: Current status,
 research challenges and future directions. Environ. Model. Softw. 62, 271–299.
 doi:10.1016/j.envsoft.2014.09.013
- Makropoulos, C. K., Natsis, K., Liu, S., Mittas, K., and Butler, D. 2008. Decision support for
 sustainable option selection in integrated urban water management. Environ. Model. Softw.
 23, 1448–1460. doi:10.1016/j.envsoft.2008.04.010.
- Marin, Philippe, 2009. Public-private partnerships for urban water utilities: A review of experiences
 in developing countries. The World Bank, Washington DC, USA
- Marleni N., Gray S., Sharma A., Burn S., Muttil N. 2012. Impact of water source management
 practices in residential areas on sewer networks a review Water Science and Technology
 Feb 2012, 65 (4) 624-642; DOI: 10.2166/wst.2012.902.
- Marleni, N., Park, K., Lee, T., Navaratna, D., Shu, L., Jegatheesan, V., Pham, N., Feliciano, A., 2015.
 A methodology for simulating hydrogen sulphide generation in sewer network using EPA
- 649 SWMM. Desalin. Water Treat. 54, 1308 1317. doi:10.1080/19443994.2014.922899
- McFallan S. and Logan I. 2008. Barriers and drivers of new public- private infrastructure: Sewer
 Mining, Report No. 6 [CIBE 2007-032A], Brisbane, Australia.
- Mujeriego, R., Compte, J., Cazurra, T. and Gullón, M., 2008. The water reclamation and reuse project
 of El Prat de Llobregat, Barcelona, Spain. Water Science and Technology, 57(4): 567-574.
- Paris S., Schlapp C. 2010. Greywater recycling in Vietnam Application of the HUBER MBR
 process, Desalination 250, pp. 1027–1030.
- 656 Plevri A., Mamais D., Noutsopoulos C., Makropoulos C., Andreadakis A., Rippis C. and Smeti E.
- 657 2016a. Promoting on-site urban wastewater reuse through MBR-RO treatment. 13th IWA
 658 Specialized Conference on Small Water and Wastewater Systems, Athens, Greece, 2016.
- 659 Plevri A., Mamais D., Noutsopoulos C., Makropoulos C., Andreadakis A., Rippis K., Smeti E., Lytras

- E. and C. Lioumis C. 2016b. Promoting on-site urban wastewater reuse through MBR-RO
 treatment. Desalination and Water Treatment. (In press).
- PCS. 2016, Pollution Control Systems Inc. Available online from http://goo.gl/hqcIfZ, accessed on
 26 April 2016.
- Pomeroy, R D. 1990. "The Problem of Hydrogen Sulphide in Sewers." *Clay Pipe Development Association. Ltd., London, 2 Nd Edition (edited by A. G. Boon), 1990, 24.*
- Schmidhuber, J. (2015) Deep learning in neural networks: An overview. Neural Networks 61, 85–
 117. doi:10.1016/j.neunet.2014.09.003
- Rozos, E. and Makropoulos, C., 2012. Assessing the combined benefits of water recycling
 technologies by modelling the total urban water cycle. *Urban Water Journal*, 9(1), pp.1-10
- Rozos, E., Makropoulos, C., and Maksimovic, C. 2013. Rethinking urban areas: an example of an
 integrated blue-green approach, Water Science and Technology: Water Supply, 13 (6), 1534–
 1542, doi:10.2166/ws.2013.140.
- Rozos, E., Tsoukalas, I., and Makropoulos, C. 2016. Turning black into green: ecosystem services
 from treated wastewater, 13th IWA Specialized Conference on Small Water and Wastewater
 Systems, Athens, Greece, National Technical University of Athens, 2016.
- Russell, S. J., Norvig, P., Canny, J. F., Malik, J. M. & Edwards, D. D. (2003) Artificial intelligence: a
 modern approach, Vol. 2. Prentice hall Upper Saddle River.

678 Sydney Water. 2013. Sewer Mining How to set up a sewer mining scheme, Australia, Sydney, 2013.

679 TheEconomist.2016.Availableonlinefrom680http://www.economist.com/blogs/graphicdetail/2016/02/taking-europe-s-pulse, accessed on68116 May 2016.

Tsoukalas, I. K., Makropoulos, C. K. and Michas, S. N., 2016. A Monte-Carlo based method for the
identification of potential sewer mining locations, 13th IWA Specialized Conference on
Small Water and Wastewater Systems, Athens, Greece, National Technical University of
Athens, 2016.

- 686 UNESCO. 2016. Available online from <u>https://www.unesco-ihe.org/research-themes/water-food-</u>
 687 <u>energy-security</u>, accessed on 5 May 2016.
- 688 United Nations 2014, World Urbanization Prospects: The 2014 Revision, United Nations, New York,
 689 2014.
- 690 United Nations, 2014. The System of Environmental-Economic Accounting 2012: Experimental
 691 Ecosystem Accounting, United Nations, New York
- WPL 2016, WPL Limited. Available online from <u>http://www.wplinternational.com/</u>, accessed on 26
 April 2016.
- 694 Xie M., Nghiem L.D., Price W.E., and Elimelech M. 2013. A Forward Osmosis–Membrane
- 695Distillation Hybrid Process for Direct Sewer Mining: System Performance and Limitations,
- 696 Environmental Science & Technology, 47 (23), 13486-13493, DOI: 10.1021/es404056e.

697